Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought.

Identifieur interne : 001139 ( Main/Exploration ); précédent : 001138; suivant : 001140

UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought.

Auteurs : Riccardo Ludovisi [Italie] ; Flavia Tauro [Italie] ; Riccardo Salvati [Italie] ; Sacha Khoury [Royaume-Uni] ; Giuseppe Mugnozza Scarascia [Italie] ; Antoine Harfouche [Italie]

Source :

RBID : pubmed:29021803

Abstract

Poplars are fast-growing, high-yielding forest tree species, whose cultivation as second-generation biofuel crops is of increasing interest and can efficiently meet emission reduction goals. Yet, breeding elite poplar trees for drought resistance remains a major challenge. Worldwide breeding programs are largely focused on intra/interspecific hybridization, whereby Populus nigra L. is a fundamental parental pool. While high-throughput genotyping has resulted in unprecedented capabilities to rapidly decode complex genetic architecture of plant stress resistance, linking genomics to phenomics is hindered by technically challenging phenotyping. Relying on unmanned aerial vehicle (UAV)-based remote sensing and imaging techniques, high-throughput field phenotyping (HTFP) aims at enabling highly precise and efficient, non-destructive screening of genotype performance in large populations. To efficiently support forest-tree breeding programs, ground-truthing observations should be complemented with standardized HTFP. In this study, we develop a high-resolution (leaf level) HTFP approach to investigate the response to drought of a full-sib F2 partially inbred population (termed here 'POP6'), whose F1 was obtained from an intraspecific P. nigra controlled cross between genotypes with highly divergent phenotypes. We assessed the effects of two water treatments (well-watered and moderate drought) on a population of 4603 trees (503 genotypes) hosted in two adjacent experimental plots (1.67 ha) by conducting low-elevation (25 m) flights with an aerial drone and capturing 7836 thermal infrared (TIR) images. TIR images were undistorted, georeferenced, and orthorectified to obtain radiometric mosaics. Canopy temperature (Tc) was extracted using two independent semi-automated segmentation techniques, eCognition- and Matlab-based, to avoid the mixed-pixel problem. Overall, results showed that the UAV platform-based thermal imaging enables to effectively assess genotype variability under drought stress conditions. Tc derived from aerial thermal imagery presented a good correlation with ground-truth stomatal conductance (gs) in both segmentation techniques. Interestingly, the HTFP approach was instrumental to detect drought-tolerant response in 25% of the population. This study shows the potential of UAV-based thermal imaging for field phenomics of poplar and other tree species. This is anticipated to have tremendous implications for accelerating forest tree genetic improvement against abiotic stress.

DOI: 10.3389/fpls.2017.01681
PubMed: 29021803
PubMed Central: PMC5623950


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought.</title>
<author>
<name sortKey="Ludovisi, Riccardo" sort="Ludovisi, Riccardo" uniqKey="Ludovisi R" first="Riccardo" last="Ludovisi">Riccardo Ludovisi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo</wicri:regionArea>
<wicri:noRegion>Viterbo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tauro, Flavia" sort="Tauro, Flavia" uniqKey="Tauro F" first="Flavia" last="Tauro">Flavia Tauro</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo</wicri:regionArea>
<wicri:noRegion>Viterbo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Salvati, Riccardo" sort="Salvati, Riccardo" uniqKey="Salvati R" first="Riccardo" last="Salvati">Riccardo Salvati</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo</wicri:regionArea>
<wicri:noRegion>Viterbo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Khoury, Sacha" sort="Khoury, Sacha" uniqKey="Khoury S" first="Sacha" last="Khoury">Sacha Khoury</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Plant Sciences, University of Cambridge, Cambridge</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mugnozza Scarascia, Giuseppe" sort="Mugnozza Scarascia, Giuseppe" uniqKey="Mugnozza Scarascia G" first="Giuseppe" last="Mugnozza Scarascia">Giuseppe Mugnozza Scarascia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo</wicri:regionArea>
<wicri:noRegion>Viterbo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Harfouche, Antoine" sort="Harfouche, Antoine" uniqKey="Harfouche A" first="Antoine" last="Harfouche">Antoine Harfouche</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo</wicri:regionArea>
<wicri:noRegion>Viterbo</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29021803</idno>
<idno type="pmid">29021803</idno>
<idno type="doi">10.3389/fpls.2017.01681</idno>
<idno type="pmc">PMC5623950</idno>
<idno type="wicri:Area/Main/Corpus">001130</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001130</idno>
<idno type="wicri:Area/Main/Curation">001130</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001130</idno>
<idno type="wicri:Area/Main/Exploration">001130</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought.</title>
<author>
<name sortKey="Ludovisi, Riccardo" sort="Ludovisi, Riccardo" uniqKey="Ludovisi R" first="Riccardo" last="Ludovisi">Riccardo Ludovisi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo</wicri:regionArea>
<wicri:noRegion>Viterbo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tauro, Flavia" sort="Tauro, Flavia" uniqKey="Tauro F" first="Flavia" last="Tauro">Flavia Tauro</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo</wicri:regionArea>
<wicri:noRegion>Viterbo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Salvati, Riccardo" sort="Salvati, Riccardo" uniqKey="Salvati R" first="Riccardo" last="Salvati">Riccardo Salvati</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo</wicri:regionArea>
<wicri:noRegion>Viterbo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Khoury, Sacha" sort="Khoury, Sacha" uniqKey="Khoury S" first="Sacha" last="Khoury">Sacha Khoury</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Plant Sciences, University of Cambridge, Cambridge</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mugnozza Scarascia, Giuseppe" sort="Mugnozza Scarascia, Giuseppe" uniqKey="Mugnozza Scarascia G" first="Giuseppe" last="Mugnozza Scarascia">Giuseppe Mugnozza Scarascia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo</wicri:regionArea>
<wicri:noRegion>Viterbo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Harfouche, Antoine" sort="Harfouche, Antoine" uniqKey="Harfouche A" first="Antoine" last="Harfouche">Antoine Harfouche</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo</wicri:regionArea>
<wicri:noRegion>Viterbo</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Poplars are fast-growing, high-yielding forest tree species, whose cultivation as second-generation biofuel crops is of increasing interest and can efficiently meet emission reduction goals. Yet, breeding elite poplar trees for drought resistance remains a major challenge. Worldwide breeding programs are largely focused on intra/interspecific hybridization, whereby
<i>Populus nigra</i>
L. is a fundamental parental pool. While high-throughput genotyping has resulted in unprecedented capabilities to rapidly decode complex genetic architecture of plant stress resistance, linking genomics to phenomics is hindered by technically challenging phenotyping. Relying on unmanned aerial vehicle (UAV)-based remote sensing and imaging techniques, high-throughput field phenotyping (HTFP) aims at enabling highly precise and efficient, non-destructive screening of genotype performance in large populations. To efficiently support forest-tree breeding programs, ground-truthing observations should be complemented with standardized HTFP. In this study, we develop a high-resolution (leaf level) HTFP approach to investigate the response to drought of a full-sib F
<sub>2</sub>
partially inbred population (termed here 'POP6'), whose F
<sub>1</sub>
was obtained from an intraspecific
<i>P. nigra</i>
controlled cross between genotypes with highly divergent phenotypes. We assessed the effects of two water treatments (well-watered and moderate drought) on a population of 4603 trees (503 genotypes) hosted in two adjacent experimental plots (1.67 ha) by conducting low-elevation (25 m) flights with an aerial drone and capturing 7836 thermal infrared (TIR) images. TIR images were undistorted, georeferenced, and orthorectified to obtain radiometric mosaics. Canopy temperature (
<i>T</i>
<sub>c</sub>
) was extracted using two independent semi-automated segmentation techniques, eCognition- and Matlab-based, to avoid the mixed-pixel problem. Overall, results showed that the UAV platform-based thermal imaging enables to effectively assess genotype variability under drought stress conditions.
<i>T</i>
<sub>c</sub>
derived from aerial thermal imagery presented a good correlation with ground-truth stomatal conductance (
<i>g</i>
<sub>s</sub>
) in both segmentation techniques. Interestingly, the HTFP approach was instrumental to detect drought-tolerant response in 25% of the population. This study shows the potential of UAV-based thermal imaging for field phenomics of poplar and other tree species. This is anticipated to have tremendous implications for accelerating forest tree genetic improvement against abiotic stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29021803</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought.</ArticleTitle>
<Pagination>
<MedlinePgn>1681</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2017.01681</ELocationID>
<Abstract>
<AbstractText>Poplars are fast-growing, high-yielding forest tree species, whose cultivation as second-generation biofuel crops is of increasing interest and can efficiently meet emission reduction goals. Yet, breeding elite poplar trees for drought resistance remains a major challenge. Worldwide breeding programs are largely focused on intra/interspecific hybridization, whereby
<i>Populus nigra</i>
L. is a fundamental parental pool. While high-throughput genotyping has resulted in unprecedented capabilities to rapidly decode complex genetic architecture of plant stress resistance, linking genomics to phenomics is hindered by technically challenging phenotyping. Relying on unmanned aerial vehicle (UAV)-based remote sensing and imaging techniques, high-throughput field phenotyping (HTFP) aims at enabling highly precise and efficient, non-destructive screening of genotype performance in large populations. To efficiently support forest-tree breeding programs, ground-truthing observations should be complemented with standardized HTFP. In this study, we develop a high-resolution (leaf level) HTFP approach to investigate the response to drought of a full-sib F
<sub>2</sub>
partially inbred population (termed here 'POP6'), whose F
<sub>1</sub>
was obtained from an intraspecific
<i>P. nigra</i>
controlled cross between genotypes with highly divergent phenotypes. We assessed the effects of two water treatments (well-watered and moderate drought) on a population of 4603 trees (503 genotypes) hosted in two adjacent experimental plots (1.67 ha) by conducting low-elevation (25 m) flights with an aerial drone and capturing 7836 thermal infrared (TIR) images. TIR images were undistorted, georeferenced, and orthorectified to obtain radiometric mosaics. Canopy temperature (
<i>T</i>
<sub>c</sub>
) was extracted using two independent semi-automated segmentation techniques, eCognition- and Matlab-based, to avoid the mixed-pixel problem. Overall, results showed that the UAV platform-based thermal imaging enables to effectively assess genotype variability under drought stress conditions.
<i>T</i>
<sub>c</sub>
derived from aerial thermal imagery presented a good correlation with ground-truth stomatal conductance (
<i>g</i>
<sub>s</sub>
) in both segmentation techniques. Interestingly, the HTFP approach was instrumental to detect drought-tolerant response in 25% of the population. This study shows the potential of UAV-based thermal imaging for field phenomics of poplar and other tree species. This is anticipated to have tremendous implications for accelerating forest tree genetic improvement against abiotic stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ludovisi</LastName>
<ForeName>Riccardo</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tauro</LastName>
<ForeName>Flavia</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Salvati</LastName>
<ForeName>Riccardo</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khoury</LastName>
<ForeName>Sacha</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mugnozza Scarascia</LastName>
<ForeName>Giuseppe</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harfouche</LastName>
<ForeName>Antoine</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>09</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">UAV remote sensing</Keyword>
<Keyword MajorTopicYN="N">drought</Keyword>
<Keyword MajorTopicYN="N">high-throughput field phenotyping (HTFP)</Keyword>
<Keyword MajorTopicYN="N">image processing</Keyword>
<Keyword MajorTopicYN="N">phenomics</Keyword>
<Keyword MajorTopicYN="N">poplar thermal imagery</Keyword>
<Keyword MajorTopicYN="N">stomatal conductance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>09</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29021803</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2017.01681</ArticleId>
<ArticleId IdType="pmc">PMC5623950</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2015 May 13;10(5):e0122165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25970600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 Nov;34(11):1199-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25192885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Aug;63(13):4671-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22922637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Dec 06;7:1808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27999580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2008 Jul;99(11):4832-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17977718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Oct;64(13):3937-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23599272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Apr;13(2):206-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Feb;12(2):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Aug;22(12):849-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1994 Dec;89(7-8):1046-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 Aug;18(8):428-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23706697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Feb;17(2):64-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Apr;24:119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25795171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Jul;7(7):767-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22751307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Oct 5;8(10):1520-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26099924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1263-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24491114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jul 29;11(7):e0159781</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27472222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Oct;65(18):5429-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25080086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2015 Sep;35(9):936-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26232786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(4):765-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Feb 26;9:23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19245718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1683-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Sep;38(9):1785-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25039365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Jul;65(14):3845-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24683180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Jun;30(6):669-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20368338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Apr;24:93-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25733069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Apr;24:87-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25706440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Oct;31(10):1076-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21990023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Mar;20(3):139-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25524213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1143-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12427981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2016 Jul;36(7):909-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27174702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Jun;24(11):2641-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25857321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 May;31(5):472-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jul;66(14):4373-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25954045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1724-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2014 Jan;19(1):52-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24139902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Manage. 2014 Dec 15;146:69-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25156267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Aug;29(8):975-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19483184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 Nov;34(11):1181-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Nov;48(3):321-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005011</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Angleterre de l'Est</li>
</region>
<settlement>
<li>Cambridge</li>
</settlement>
<orgName>
<li>Université de Cambridge</li>
</orgName>
</list>
<tree>
<country name="Italie">
<noRegion>
<name sortKey="Ludovisi, Riccardo" sort="Ludovisi, Riccardo" uniqKey="Ludovisi R" first="Riccardo" last="Ludovisi">Riccardo Ludovisi</name>
</noRegion>
<name sortKey="Harfouche, Antoine" sort="Harfouche, Antoine" uniqKey="Harfouche A" first="Antoine" last="Harfouche">Antoine Harfouche</name>
<name sortKey="Mugnozza Scarascia, Giuseppe" sort="Mugnozza Scarascia, Giuseppe" uniqKey="Mugnozza Scarascia G" first="Giuseppe" last="Mugnozza Scarascia">Giuseppe Mugnozza Scarascia</name>
<name sortKey="Salvati, Riccardo" sort="Salvati, Riccardo" uniqKey="Salvati R" first="Riccardo" last="Salvati">Riccardo Salvati</name>
<name sortKey="Tauro, Flavia" sort="Tauro, Flavia" uniqKey="Tauro F" first="Flavia" last="Tauro">Flavia Tauro</name>
</country>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Khoury, Sacha" sort="Khoury, Sacha" uniqKey="Khoury S" first="Sacha" last="Khoury">Sacha Khoury</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001139 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001139 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29021803
   |texte=   UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29021803" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020